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An Intelligent Reflecting Surface (IRS) has emerged as a key solution to performance 

bottlenecks in wireless communication. Its ability to combat multipath fading and improve 

signal and energy efficiencies has made it relevant to various industry applications, including 

the Internet of Things (IoT), smart manufacturing, cognitive radio, radar, and Multiple-Input 

Multiple-Output (MIMO) systems. This paper presents a comprehensive review of the IRS’s 

structure and hardware requirements, channel estimation, optimization methods, and key 

applications to enable readers to understand how the IRS operates, its benefits, and some of the 

challenges involved in its application. The structure and hardware requirements are important 

to understand as they dictate the material composition, number, and arrangement of reflecting 

elements, and their reconfigurability. Channel State Information (CSI) plays a crucial role in 

optimized transmission as it gives information on the channel conditions, enabling users to tailor 

their transmission accordingly. In this work, all scholarly papers related to the IRS published 

between 2010-2024 were considered, sampled, and categorized based on the key themes. An 

analysis of the hardware and architecture reveals that transceiver hardware imperfections 

significantly affect IRS optimization and should be considered. While several channel 

estimation techniques offer comparable benefits, accuracy turns out to be the most important 

factor to consider. Further, results show that flexibility and inference accuracy make machine 

learning techniques superior to other optimization methods. Still, challenges remain in relation 

to IRS standardization, privacy concerns, and handover techniques that ought to be addressed 

for future industrial integration. 
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INTRODUCTION 

Over the years, significant technological advances have been 

made to improve the QoS of communication systems. From 

developing advanced modulation schemes, optimizing wireless 

network protocols, and implementing error correction codes, the 

focus has been on increased efficiency to meet the rising demands 

for fast, secure, and reliable communication. However, such 

techniques have little control over random and unpredictable 

wireless communication systems. An IRS presents a 

revolutionary technology with enormous potential to transform 

communication systems [1]. The use of IRS introduces a 

paradigm shift in how one designs, deploys, and optimizes 

wireless systems, offering substantial improvements in capacity, 

coverage, energy efficiency, and overall system performance. 

 

The IRS has gained the attention of researchers and industry 

experts as it provides a potential solution to performance 

bottlenecks in wireless communication. An IRS is an artificial 

structure comprising many sub-wavelength-sized elements, such 

as passive reflecting elements or electronically controlled phase 

shifters [2]. These elements are strategically deployed to alter 

signal propagation. By intelligently configuring these elements’ 

phase shifts or reflection coefficients, an IRS effectively shapes 

the direction, controls amplitude, and changes the signal’s phase, 

enabling various desirable signal processing functionalities [3]. 

Depending on the application of these metasurfaces, several 

terminologies have emerged, including IRS [4], Reconfigurable 

Intelligent Surfaces (RIS) [5], Large Intelligent Surface Antennas 

(LISA) [6], and Large Intelligent Metasurface (LIM) [7]. For 

reasons of consistency, the IRS is adopted in this review. 

 

Among the merits of the IRS is that it overcomes the limitations 

imposed by traditional wireless communication systems, such as 

multipath fading, limited bandwidth, and unreliability caused by 

random interference. By carefully manipulating the wireless 

channel characteristics, IRS effectively improves the strength of 

signals, mitigates co-channel and inter-user interference, and by 

so doing, improves the quality of communication [8]. This 

technology offers the potential for significant improvements in 

coverage extension, capacity enhancement, and energy 

efficiency, which are critical considerations in today’s wireless 

networks. 

 

http://ajeeet.ft.unand.ac.id/
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The advantages of the IRS are not limited to a specific domain or 

industry. It can impact various sectors, including 

telecommunications, smart cities, healthcare, Internet of Things 

(IoT), and autonomous systems. In telecommunications, IRS can 

help overcome signal attenuation and path loss challenges, 

enabling reliable and high-quality wireless connectivity in urban 

environments, indoor spaces, and rural areas [8]. In the IoT 

domain, IRS can enhance the connectivity and energy efficiency 

of massive IoT deployments, facilitating the seamless integration 

of large number of devices [9]. Moreover, in the context of 5G 

and beyond, IRS can enable intelligent beamforming, spatial 

multiplexing, and efficient spectrum utilization, facilitating ultra-

fast and reliable communication [4]. 

 

While the potential benefits of the IRS are compelling, it is 

essential to acknowledge the challenges and disadvantages 

associated with this technology. The deployment of IRS 

introduces new complexities in terms of hardware design, channel 

estimation, synchronization, and optimization [10]. The massive 

number of elements and the need for real-time control and 

coordination require sophisticated algorithms and efficient 

signaling protocols. Additionally, the cost, power consumption, 

and integration of the IRS into existing infrastructure pose 

practical challenges that need to be addressed. Further, [11] 

shows that in the presence of hardware imperfections, the IRS 

becomes less beneficial due to the trade-off between capacity 

improvement and the number of reflecting elements. 

Nonetheless, extensive research efforts are underway to tackle 

these issues and unlock the full potential of IRS technology. 

 

In reviews [1] - [4], the authors provide surveys and overviews of 

the IRS design and performance in communication systems. 

Authors in [1] go into detail on the hardware components, design, 

and some applications of the IRS. The focus in  [2] is on theory 

and design, use cases, and practical challenges associated with 

IRS implementation. Authors in [8] present a contemporary 

survey of the reconfigurability of the IRS regarding its phase shift 

design for the application in wireless communication alongside 

some practical applications of metasurfaces. An overview of IRS 

hardware and functionality, deployment, performance evaluation, 

and brief details on channel estimation protocols are presented in 

[3]. Various channel estimation techniques have been presented 

in [8] - [33] with an evaluation of their implication on IRS 

performance. Research has shown that channel estimation is key 

in informing optimization processes and related outcomes, which 

are presented herein.  

 

The research community has shown significant interest in IRS, 

resulting in many publications in recent years. While the IRS is 

still in the early stages of deployment, several experimental 

testbeds and proof-of-concept demonstrations have showcased its 

feasibility and potential. Researchers and industry experts are 

actively exploring various aspects of IRS, including theoretical 

foundations, hardware design, channel modelling, signal 

processing algorithms, deployment strategies, and performance 

evaluation. With an emphasis on system-level optimizations, 

standardization efforts, and integration with current 

communication technologies, developing trends show a move 

from theoretical investigations to actual implementations and 

field trials. 

 

This review paper presents a comprehensive summary of all 

works related to the IRS in current research while showing how 

they are related and connected to improved communication. The 

synthesis of existing knowledge and identification of research 

challenges will contribute to the maturation of IRS technology 

and its successful integration into next-generation 

communication systems.  

 

In essence, the emergence of IRS technology has generated 

significant excitement and interest in the communication 

industry. Its ability to reshape wireless propagation and overcome 

traditional limitations opening up new possibilities for enhanced 

connectivity, improved system performance, and efficient 

spectrum utilization. While the IRS is still in the research and 

development phase, its potential impact spans various sectors and 

industries. This review paper thus provides an in-depth evaluation 

of current progress in IRS research, its advantages, disadvantages, 

and future trends. Understanding the capabilities and challenges 

of the IRS can guarantee its optimal deployment and integration 

into future communication networks. 

 

While authors in [1] - [4] address key aspects of the IRS and its 

place in future wireless communication, the main challenge-

channel estimation is only presented in brief while it significantly 

affects the extent to which the capabilities of the IRS can be 

realized. This paper presents an overview of the IRS design and 

architecture from available literature, followed by details about 

various channel estimation protocols, algorithms, and techniques, 

providing a better understanding of current challenges and 

solutions offered in the literature. This review presents an in-

depth evaluation of the IRS application, focusing on various 

optimization problems, parameters considered, and the gaps that 

remain unaddressed. Finally, a conclusion is given on open 

problems for future research based on evaluating current studies. 

METHOD 

This section details the process followed in selecting journal 

papers for inclusion in this review and how they were categorized. 

Inclusion Criteria 

Research articles were gathered from scholarly journals and 

databases published between 2010 and 2023 for inclusion in this 

review. Since this review encompasses all works related to the 

performance, design, and future applications of the IRS in diverse 

fields, all relevant peer-reviewed articles on this subject were 

considered for evaluation. Using the IEE explore, Google 

Scholar, and Research.com, over 100 articles on IRS were 

discovered and filtered by relevance for inclusion in this work. 

The distribution of the 70 papers by themes is shown in Figure 

(1) below. 

Organization 

This review is organized into sections and subsections containing 

closely related articles for easy comparison and evaluation. In 

Chapter 3, we address IRS design and hardware considerations. 

In Chapter 4, channel estimation approaches are considered. 

Chapter 5 addresses optimization methods and Chapter 6 

highlights other uses of the IRS, including upcoming 

technologies. Chapter 7 presents a discussion of all the sections 
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highlighted to compare the available techniques to reveal the best 

options and prevailing challenges and recommendations derived 

from the discussion. Finally, chapter 8 concludes the review, after 

which the references used are listed. 

 

 
Figure 1: Distribution of research paper by thematic areas 

Hardware Design and IRS Architecture 

An IRS is a planar or 2-D array of meta-atoms/metasurfaces 

having subwavelength thickness whose passive beamforming 

enhances SE and EE. The IRS has proved beneficial in 

reconfiguring the wireless environment through passive beam 

shaping [1]. In [1], the authors present an overview of IRSs and 

their place in the wireless communication environment, showing 

how the random and unpredictable wireless communication 

environment presents a significant performance bottleneck 

necessitating the use of IRSs, which helps to achieve the desired 

energy and spectral efficiencies. The work in [2], offers an 

overview of IRS design, configuration, and applications in 

communication systems. The arrangement and structure of the 

reflecting elements determine the degree of phase shift of the 

incident wave, dictating the various applications of the IRS [2]. 

  

The IRS consists of three layers; the first consists of the passive 

tunable patches that are etched into a dielectric material, and the 

second is made up of a copper plate whose role is to prevent the 

signal from leaking out [12]. The third layer comprises a 

controlling circuit board for the real-time manipulation of the 

signal phase to direct the beam in the desired direction, as shown 

in Figure (2) below. 

 
Figure 2: IRS structure 

 

The IRS controller plays an essential role in phase shift 

optimization by receiving the set reconfiguration points and 

sending the decisions on phase/amplitude shifts to all the 

reflecting elements. The controller’s power consumption has 

been shown to depend on the circuit implementation. In [12], a 

Field-Programmable Gate Array (FPGA), implemented to control 

a varactor-diode-based IRS, was shown to consume 0.72W, 

which is significantly below that of an active beamforming relay. 

 

The unique characteristics of IRSs are highlighted in [4], 

including passive reflection. Further, they do not introduce 

additional noise, offering a significantly energy-efficient 

solution. Authors in [4] also show that the IRSs apply full-band 

operation, implying that they operate in any frequency while 

achieving a full-duplex transmission. IRSs are designed for use in 

LoS and non-LoS systems. In LoS systems, the IRS replicates the 

direct path, leading to improved diversity. In non-LoS, the IRS 

provides an alternative path for the signals. However, for the IRS 

to significantly improve the system’s performance [13], optimal 

hardware design is crucial. In their work, authors in [13] design 

the graphene-based reflecting surface to obtain a phase response 

of 306.82 degrees, noting that amplitude and phase response 

depend on IRS hardware design, affecting the achievable data 

rate.  

 

The question of IRS deployment is also important in this case 

since it determines the signal received and the data rate achieved. 

Authors in [14] delve into the deployment challenges, showing 

that a hybrid deployment structure would be more beneficial 

while the IRS should be placed closer to users or the BS. The 

hybrid IRS deployment structure requires decentralized IRS 

allocation where the IRS elements are distributed at the receiver 

and transmitter ends [14]. This is important as it results in a 

significantly higher minimum rate than the BS-side and user-side 

deployment schemes. In addition, authors in [11] show that 

because of path loss, the IRS placement determines energy 

efficiency and must be carefully considered.  

 

In addition to IRS hardware design and reconfiguration, the 

transceiver hardware is shown to affect the performance of IRS-

aided communication systems significantly. Transceivers may be 

characterized by imperfections, as shown in Figure (3) below. 

These impairments determine the system capacity and have 

attracted the attention of various researchers, as described herein. 

In [15], the authors assess the impact of hardware impairments on 

the ergodic capacity and outage probability. Their results indicate 

that the ergodic capacity is significantly affected by hardware 

impairments in the transmitter or receiver.  

 
Figure 3: Various transceiver imperfections [18] 
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Similarly, [16] considers hardware impairments in a Multiple-

Input Single Output (MISO) system and shows that in addition to 

outage probability and ergodic capacity, symbol error rate and 

diversity order in such a system are independent of IRS elements. 

This indicates that hardware impairments should be carefully 

considered in practical transmission systems. Further, authors in 

[17]-[18] show that the system’s spectral efficiency saturates after 

a particular SNR and no improvement in reflecting elements can 

enhance it.  

 

Understanding the system requirements informs the choice of IRS 

design and architecture and transceiver hardware. This results in 

varying outcomes of channel estimation methods and subsequent 

optimization techniques, as highlighted in sections 4 and 5 below.  

Channel Estimation 

For the IRS’s capabilities to be fully exploited, accurate channel 

estimation is required. This section summarizes recent works on 

CSI estimation in the context of the IRS. Estimating the Access 

Point -IRS (AP-IRS) and IRS-user channels separately would be 

challenging and impractical for a completely passive IRS. 

Therefore, researchers focus on estimating the cascaded AP-IRS-

user channel. The IRS can be equipped with RF chains for signal 

processing capabilities, enabling it to acquire some crucial 

channel characteristics. In such a case, the IRS is said to be active 

or semi-passive, depending on the activation pattern. Authors 

choose whether to use fully passive IRS without signal processing 

abilities or incorporate active elements depending on the needs 

and complexity level required. In this section on channel 

estimation, research works are categorized into various 

subsections comprising common techniques for ease of 

comparison. 

 

The Least Square (LS) method has found its application in 

channel estimation, proving effective, straightforward, and less 

complex compared to the Minimum Mean Squared Error 

(MMSE) method and other channel estimation techniques. 

However, varying results are obtained depending on the number 

and active/passive nature of the IRS elements, as discussed in this 

section. The LS method estimates the channel response between 

transmitters and receivers, indicating signal distortion, gain, and 

attenuation. Due to its computational efficiency, the LS has been 

applied in many channel estimation approaches, including the 

ON/Off technique, element grouping, and as an input to machine 

learning networks, as described below.  

The On/Off Approach 

The On/Off method is founded on turning the IRS off for direct 

channel estimation and turning it on for estimating the cascaded 

channel. In [6], the authors adopted an On/Off method for CSI 

estimation. The first phase entails turning off the LISA to estimate 

the direct channel using uplink pilots. In the second stage, the 

reflective elements are turned on each at a time and pilot 

transmission in each time slot. The cascaded AP-IRS-user 

channel is estimated by exploiting the estimated BS-user channel 

[6]. Although this method proved straightforward, the pilot 

overhead becomes extremely prohibitive in cases involving large 

numbers of reflective elements.  

 

Considering a MISO point-to-point system, channel reciprocity 

and Time-division Duplex (TDD  are adopted in [19]  to estimate 

the channel coefficients. A binary LS method is proposed that 

enables the estimation of the M+1 channel vectors for all N 

elements of the IRS. With an On/Off approach similar to that 

adopted by [6], the authors in [19] show that the IRS elements 

required increases by 8% when using LSEs than when assuming 

perfect CSI for optimization. In addition, they show that it is 

challenging to achieve perfect On/Off modes due to practical 

hardware limitations. Therefore, there is a need to incorporate the 

errors when computing the cascaded channel matrix, as shown in 

[20], where the authors discuss the importance of including the 

error when modeling the activation states of the IRS. The On/Off 

method is also applied in[21] and [22] utilizing LS and Bayesian 

MMSE estimations, respectively.  

 

Moving from a random activation pattern, authors in [23] propose 

an efficient channel estimation scheme to lower the Cramer-Rao 

lower bound (CRLB). It is shown that channel estimation 

efficiency significantly depends on the activation pattern. 

Contrary to the On/Off method adopted by [6]., authors in [23] 

design an IRS activation pattern following a series of Discrete 

Fourier Transforms (DFTs). Compared with the On/Off method, 

the authors find that the proposed training scheme has a variance 

of one order less, implying that it significantly reduces the 

training period. 

Element Grouping 

Since training overhead is a major characteristic of the IRS 

elements, several authors sought to solve this limitation by 

grouping the IRS into several groups, each composed of adjacent 

elements. Similarly, this approach has been used in [24], where 

the authors subdivided the IRS into N sub-surfaces comprising 

neighboring reflecting elements to reduce the computational 

complexity, as shown in Figure (4) below. Using a predefined 

reflection pattern, the superimposed CFR of the system is derived. 

This system shows a 14dB power gain over the On/Off CSI 

estimation technique. 

 
Figure 4: IRS element grouping 

 

Considering the constraint of discrete phase shifts, authors in [25] 

propose an effective channel estimation scheme that follows a 

progressive estimation of the channels for all IRS elements. In 

this case, the intra-group channels are estimated from the per-

group estimates. In this case, the hierarchical design primarily 

entails IRS channel estimates following partitions and groupings 

of IRS elements. 
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Similarly, authors in [26] design a channel estimation scheme by 

applying sparse and grouping techniques to lower the channel 

estimation complexity in millimeter wave (mmWave) channels. 

The design is shown in Figure (6) below. Here, elements with the 

same color are given the same reflection coefficients, through 

which the authors showed that complexity is significantly 

reduced while enhancing the channel estimation accuracy.  

Machine Learning Techniques 

Machine learning channel estimation approaches work by 

establishing a channel-signal relationship by referring to the 

initial channel estimate provided. The LS or MMSE methods 

provide the initial CSI used in neural networks for improved 

accuracy, reliability, and reduced complexity. A Deep Learning 

(DL) channel estimation approach is adopted in [20], where the 

authors use the Convolution Neural Network (CNN) shown in 

Figure (7) below to enable each user to access the CNNS and 

accurately estimate its channel. The twin CNN structure takes in 

LS estimates from which a non-linear relationship is constructed 

between the channel and the received signals. One of the most 

significant outcomes of this work is that the proposed DL method 

does not require to be retrained after a change in user locations 

for up to 4 degrees. Similarly, deep learning methods are applied 

in [27], [28], and [29]. 

 

Authors in [27] apply the LS method in the terahertz (THz) 

system, enabling them to estimate the individual channel 

components, which are shown to be independent. The LS 

estimates are used as the starting point in the machine learning 

approach. In [28], the LS estimates are used considering no prior 

knowledge of the channel characteristics, providing inputs to the 

CNN-based Deep Residual Network (CDRN) framework. 

Results indicate that this approach provides a better estimate of 

the channel with reduced complexity.  

In a Self-Supervised Learning (SSL) method, authors in [29] 

apply the LS estimates as input for the inference phase of their 

channel estimation architecture to give out the refined channel 

estimates. The  SSL approach eliminates the need for ground truth 

labels and provides better results than the CDRN network 

implemented by [28].   

 

In [30], the authors apply the concept of sparsity in the Terahertz 

(THz) range and incorporate deep learning for efficient channel 

estimation. First, the problem is turned to a sparse recovery 

problem from a channel estimation issue. The sparse matrix is 

solved by a two-stage neural network that aids in the design and 

reconstruction of the signal. Simulation results indicate that the 

proposed method leads to significantly good results regarding the 

average error rate and NMSE, with the error rate being 

approximately 0.16 [30]. 

 

To lower the channel estimation complexity, authors in [31] 

propose a DL approach that decouples the problem into three 

main phases. First, the direct channel is estimated. The reflected 

channel communication and reflected sensing channels are 

estimated in the next two phases. Two CNN architectures are 

presented for offline and online training. One CNN is applied in 

the direct channel estimation (DE-CNN), while the second CNN 

is used for reflection estimation (RE-CNN). Simulation results 

indicate that the proposed DL scheme ensures better performance 

than the LS estimator.  

In [32], the authors argue that the errors associated with phase 1 

in the approach presented by [31] will be passed on to the second 

and third phases, limiting the estimation accuracy and reliability. 

To solve this challenge, a single CNN is applied in [32] to 

estimate the cascaded channel and then use it to extract individual 

channels. This technique mitigates the error propagation effect 

while reducing the channel estimation complexity. Applying 

offline and online training similar to [31], the authors in 

[32]compare the performance of the CNN-based channel 

estimation process to LS and On/Off methods. In this case, the 

database obtained in offline training serves as the input during the 

online phase. 

 

While [31] and  [32] are based on limited sizes of IRS structures, 

the authors in [33] propose a scalable and flexible unsupervised 

learning model that solves the size limitation. In this case, multi-

carrier waveforms, discrete and continuous phase shifts, and 

large-size IRSs are considered. Further, the authors in [33] show 

that clustering may serve to reduce the execution time, adding to 

the merits associated with the proposed scalable unsupervised 

learning model 

 

Considering a semi-passive IRS, authors in [34] develop an 

effective channel estimation technique that relies on a 

probabilistic method for antenna selection to select the optimal 

positions of the active IRS elements. This design for selecting the 

active antennas adopts extrapolation to optimize the channel 

extraction process and the activation pattern. Specifically, two 

deep-learning schemes are utilized. First, a CNN network is used 

for channel extrapolation to obtain full channels from the 

estimated channels. Second, an FNN network is applied for beam-

searching approaches, mapping the channel estimates to the 

beamforming vector.  

Compressive Channel Estimation 

In [35], a compressive channel estimation technique is presented 

for millimeter wave (mmWave) systems. The inherent sparsity 

associated with mmWave systems is utilized to minimize training 

overhead significantly. The authors model the BS-1RS and IRS-

UE channels as narrowband geometric channel models and then 

apply Khatri-Rao and Kronecker products to estimate the 

cascaded channel matrix. Essentially, the authors in [35] shift 

from channel estimation to sparse signal recovery, and estimation 

of the sparse signal is done following two methods: the 

Orthogonal Matching Pursuit (OMP) and Gaussian-Mixture 

Approximate Message Passing (GAMP). Compared to the 

conventional LS estimator and Oracle LS method, the proposed 

compressed sensing method has a higher computational 

efficiency than the conventional LS method while achieving a 

performance close to that of the Oracle LS estimator.  

 

Considering a broadband mmWave system, authors in [36] 

propose a downlink transmission framework that relies on 

compressive sensing to estimate the BS-UE and IRS-UE 

channels, assuming knowledge of the BS-IRS channel. The pilot 

signals are decomposed into two for separately estimating the BS-

IRS and IRS-UE channels. An efficient Distributed Orthogonal 

Matching Pursuit (DiOMP) algorithm is presented, which 

outperforms the conventional OMP algorithm. Further, the 

authors propose a redundant dictionary to mitigate the leakage 

power associated with transformation matrices. 
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Considering a single SiSo communication system, authors in [37] 

develop a two-phase channel estimation technique for a double-

IRS system. The main focus here is to estimate the individual 

channel gains for the UE-IRS1, IRS-IRS2, and BS-IRS2 links 

instead of estimating the cascaded channel gains. In phase 1, the 

authors estimate the BS-IRS2 and IRS2—IRS1 channels 

simultaneously to reduce the complexity and save time. In phase 

2, the UE-IRS1 is modeled as a 2-dimensional Markov process. 

The Dynamic Turbo Orthogonal Approximate Message Passing 

(D-TOAMP) and Dynamic Compressive Sensing AMP (DCS-

AMP) algorithms are used to estimate the channel gain. While 

applying the Kalman-like filter (KLF) and the Kalman filter (KF) 

to track the UE-IRS1 channels, the authors show that this method 

reduces computation and significantly lowers the estimation 

error.  

 

In [38], the authors acknowledge that channel estimation in an 

LIS-aided system is characterized by high training overhead (for 

passive LIS) or high power consumption (for active LIS). The 

authors propose two approaches to address these limitations: 

compressive sensing and deep learning. In the first approach, a 

LIS with few active elements is used. The LIS elements' channels 

are constructed using retrieved channels from the active elements. 

In the second approach, the LIS learns the optimal interaction 

with the incident signals following a deep learning approach. The 

authors show that with less than 1% of elements of the LIS being 

active and with negligible training overhead, the two solutions are 

close to the upper bound of a system adopting perfect CSI. 

 

In [7], the authors propose a Joint Bilinear Factorization and 

Matrix Completion (JBF-MC) algorithm that approaches the 

sparse matrix problem from a different perspective. In their work, 

[13] presents two crucial stages. In stage 1, sparse matrix 

factorization is done following the Bilinear Generalized 

Approximate Message Passing (BiG-AMP) algorithm. In 

STAGE 2, matrix completion is done using the Riemannian 

Gradient (RGrad) algorithm. Evaluating the performance 

regarding Normalized Mean-Square-Error (NMSE), this 

approach shows superior performance compared to K-Singular 

Value Decomposition (K-SVD) and Sparse Modelling Software 

(SPAMS) techniques of sparse matrix factorization. Simulation 

outcomes also revealed that the matrix completion method 

achieves better Iterative Soft Thresholding (IST) than Iterative 

Hard Thresholding (IHT). 

 

As the size of the sparse matrix increases complexity, authors in 

[39] presented a low-complexity Iterative Atom Pruning Based 

Subspace Pursuit (IAP-SP) scheme that enabled the simultaneous 

estimation of the BS-IRS and IRS-UE channels. The approach 

performed better than that presented in [35] by removing 

redundant columns in the generated sensing matrix iteratively. 

 

In [40], the authors show that channel overhead and complexity 

in mmWave channel estimation can be significantly reduced by 

incorporating super-resolution and partial on-off schemes. In this 

scheme, a subset of the reflecting elements is turned on instead of 

turning on each element simultaneously. By switching on the 

elements in the subset, the channel estimate HLS estimate obtained 

can be seen as a low-resolution image. This is then converted to 

a high-resolution image via linear interpolation. This interpolated 

channel estimate is used as input to the super-resolution network, 

which has three convolution layers that are now adopted for 

higher channel estimation accuracy. Simulation outcomes 

revealed that this scheme achieves better NMSE than the LS, 

OMP, and DNN-based methods.  

 

In [41], the authors propose to address the challenges associated 

with channel estimation in the mmWave channels by developing 

a hybrid multi-objective evolutionary paradigm. Contrary to the 

sparse signal recovery solutions, which lead to a suboptimal 

solution, authors in [41] use Iterative Hard Thresholding (IHT), a 

gradient-based method, to achieve a multi-objective optimal 

solution. Simulation outcomes showed that the scheme used 

outperforms the OMP, oracle-LS, and Two-stage channel 

estimation techniques in NMSE and spectral efficiency.  

 

Utilizing a block-sparse processing technique to estimate the 

equivalent angles, authors in [42] consider the effect of beam 

squint in estimating the cascaded BS-IRS-User channels. A twin-

stage orthogonal matching pursuit method (TS-OMP) is proposed 

to effectively estimate the cascaded channel’s delays, gains, and 

equivalent angles. In the second stage, an OMP method is 

proposed to estimate the path delays and gains following the 

estimated equivalent angles. Simulation results show that even in 

a very high number of pilots, the proposed TS-OMP method 

approaches an ideal solution with known path delays and channel 

gains.  

Other Methods 

Considering a multiuser MIMO system, the authors in [43] utilize 

the fact that the IRS reflects the channels from all the users to the 

BS via the same channel to reduce the channel estimation time. A 

three-phase channel estimation protocol is presented, which relies 

on the highly correlated user-IRS-BS channels to reduce the pilot 

sequence. In phase 1, the BS estimates the direct BS-Users 

channels with the IRS turned off. In phase 2, the IRS is turned on 

with only one user allowed to transmit pilot symbols to enable the 

BS to estimate the user-IRS channel. In phase 3, the other users 

are allowed to transmit their pilot symbols. However, instead of 

estimating the entire channel vectors, the authors in [43] note that 

only the scaling factors need to be estimated because these 

channels are just scaled versions of the single user’s estimated 

channel. Evaluating this channel estimation technique, the 

authors show that the minimum pilot sequence length is 

significantly reduced for cases with and without receiver 

compared to a MIMO system without IRS.  

 

In [44], the authors build on the 3phase channel estimation 

scheme proposed by authors in [43] to develop a more effective 

2phase channel estimation, which shows a significant reduction 

in error propagation. In the first phase, the authors estimate the 

direct and reflected links associated with a typical user. In the 

second phase, the CSI associated with the other users is estimated. 

By altering the IRS’s reflection patterns, the errors associated 

with the direct channel do not affect the reflected channel 

estimate. Comparing this technique with the one proposed in [43], 

it is shown that the proposed 2phase channel estimation scheme 

accurately estimated all the channel coefficients with a reduced 

pilot sequence and outperformed the 3phase scheme in the 

presence of noise at the AP.  
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In [45], a two-stage channel estimation protocol was proposed to 

further reduce the training overhead by using a semi-passive IRS. 

Here, the authors leverage the channel coherence differences 

between BS-IRS and the IRS-UE channels to reduce pilot 

overhead by introducing semi-passive elements. The two 

channels are estimated separately. First, the BS-IRS channel is 

estimated following a super-resolution algorithm that seeks to 

move the estimated AoA and AoDs to values much closer to the 

real values via gradient descent. An accurate estimate of the BS-

IRS channel is obtained by solving the optimization problem via 

a closed-form solution. Second, the RIS-UE channel estimate is 

obtained by a parallel factor (PARAFAC) decomposition 

technique that leads to a more robust LS estimate of the channel. 

Simulation results indicate that the two-stage channel estimation 

protocol achieves higher accuracy and a 10% higher spectral 

efficiency than LS, MMSE, and compressed sensing. 

 

While all the channel estimation techniques above address the 

entire composite channels, authors in [46] developed a scalable 

CSI estimation scheme that only estimates the end-to-end 

composite channels followed by transmit power allocation. The 

authors sought to address the challenge of increased 

computational complexity and pilot overhead by developing a 

scheme that relies on known overhead to strike a flexible trade-

off between pilot overhead, complexity, and achievable rate. 

Instead of estimating the direct and reflected channels separately, 

the authors in [46] estimate only the composite channel 

comprising the direct link and M reflected channels considering 

the Qth training slot. This way, the problem is simplified into a 

search for the optimal q =1,…Q, that maximizes the achievable 

rate. It is shown that the proposed system is independent of the 

reflecting elements, enabling it to be adjusted dynamically for 

preferred trade-offs between performance and pilot overhead.  

 

Table 1: A summary of research on channel estimation 

Subcategory References Approach 

IRS 

Active/ 

Passive 

On/Off 

method 

[6] 

On/Off method 

for reflective 

radio 

Passive 

[19] 
On/Off with LS 

estimation 
Passive 

[21] 

On/Off 

activation 

pattern for IRS 

grouping 

Passive 

[22] 
MMSE-On/Off 

estimation 
Passive 

[23] 

DFT-based IRS 

activation 

pattern 

Passive 

IRS element 

grouping 

techniques 

[24] 

 

IRS grouping for 

CSI estimation 

and reflection 

optimization 

passive 

[25] 

 

Grouping for 

per-group and 

intra-group 

Passive 

Subcategory References Approach 

IRS 

Active/ 

Passive 

channel 

estimation 

[26] 

 

Grouping and 

Sparse patterns 
Passive 

Machine 

learning 

techniques 

[27] 

LS method for 2-

stage channel 

estimation 

 

[28] 

LS for CDRN 

channel 

estimation 

framework 

Passive 

[29] 

LS for self-

supervised 

channel 

estimation 

Passive 

 

[30] 

Deep learning 

with a 2-stage 

neural network 

Passive 

[31] 

A 3-stage 

approach 

utilizing two 

different CNN 

networks 

Passive 

[32] 

A single CNN 

network for the 

cascaded 

channel 

estimation 

process 

Passive 

[33] 

A flexible and 

scalable 

unsupervised 

learning model 

 

[34] CNN and FNN 
Semi-

passive 

Compressive 

channel 

estimation 

approaches 

[35] 
OMP and 

GAMP 
passive 

[36] DiOMP Passive 

[37] 
D-TOAMP and 

DCS-AMP 

Semi-

passive 

[38] 
OMP and deep 

learning 

Semi-

passive 

[7] 
Big-AMP and R-

grad 
Passive 

[39] IAP-SP Passive 

[40] 
Super-resolution 

and LS 
Passive 

[41] 

A hybrid 

multiobjective 

evolutionary 

paradigm 

Passive 

[42] 

Block-sparse 

processing and 

TS-OMP 

Passive 

[45] 
PARAFAC and 

LS 

Semi-

passive 

[43] MMSE passive 
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Subcategory References Approach 

IRS 

Active/ 

Passive 

Other 

methods 

[44] Twin-stage LSE Passive 

[46] Scalable LSE Passive 

Optimization 

The benefits derived from IRS applications in wireless 

communication systems arise from the ability to alter the phases 

of each IRS element for beam steering. Various authors have 

approached the phase shift optimization problem differently, 

some focusing on data rate maximization, others hoping to 

achieve maximum SINR, and many other aspects of the wireless 

communication system. This section presents a review of current 

works on IRS reflection optimization. 

Iterative Optimization Methods 

To minimize transmit power, authors in [47] present an 

optimization technique focusing on three aspects: the phase shift 

matrix, power allocation, and the transmit beamforming vector. 

Since these three factors are highly coupled, making the problem 

non-convex, an iterative algorithm is employed to establish 

feasible starting points and solve the two subproblems formed for 

phase shift and beamforming optimization. Simulation results 

indicate that transmit power decreases as the number of reflective 

elements and the IRS-user distance increase.  

 

Addressing the same problem as in [47], transmit power in the AP 

is the main focus in [48], whereby the authors use transmit 

precoding and IRS discrete phase shifts with the constraint of a 

set minimum value of SINR. Ignoring hardware imperfections 

and assuming perfect CSI, the authors present two algorithms to 

solve the problem for a single-user system. The branch-and-

bound method provides an optimal solution while the successive 

refinement algorithm is applied to give a sub-optimal solution to 

the optimization problem. The authors advance the problem from 

a single-user to a multiple-user setup and show that discrete phase 

shift gives the same power gain as would be obtained from a 

continuous phase shift problem.  

 

Similarly, discrete phase shifts are considered by the author in 

[49], whereby an Alternating Optimization (AO)  algorithm is 

adopted to optimize the SINR relying on the Gradient 

Extrapolated Majorization-Minimization (GEMM) technique. In 

this case, transmit beamformer, IRS phase shifts, and receive 

beamformer are the optimization variables, unlike the approach 

adopted in [48], where only the transmitter precoding and IRS 

phase shifts are used. Results in [48] show that applying the 

GEMM technique to solve the power minimization problem 

performs better than the semidefinite relaxation approach, as it 

nearly reaches the upper bound scheme. Further, the GEMM 

algorithm has low complexity and only 20 iterations are required 

for convergence.   

 

Moving from single-IRS to multi-IRS systems, the authors in [50] 

maximize  the sum rate by jointly optimizing the IRSs’ passive 

reflection and user association. An intractable non-convex 

problem is formulated and effectively solved by an AO algorithm. 

Specifically, fractional programming handles the IRS 

beamforming while network optimization addresses the user 

association issue. Simulation results indicate that the proposed 

algorithm leads to a 200% increase in energy efficiency and at 

least a 400% gain in sum rate for all users.  

 

In [21], the achievable rate is maximized following joint transmit 

power and passive IRS beamforming vector to solve the problem 

sub-optimally. First, the authors design a transmission protocol 

for channel estimation where only the group channels are 

estimated, thereby reducing channel estimation complexity. A 

customized initialization scheme is proposed for the iterative 

optimization algorithm that leads to a locally optimal solution. 

The research done in [21] leads to the understanding that the 

trade-off between estimation complexity and flexibility of the 

passive beamformer can be addressed by having an optimal size 

for the IRS groups. 

Machine Learning Optimization Approaches 

In [52], the concept of SINR constraint in a cognitive radio (CR) 

communication system is addressed. In this case, the main aim is 

to jointly optimize the transmit power at the Secondary User (SU) 

and passive beamforming at the IRS. Successive convex 

approximation and AO techniques are applied to provide a 

suboptimal solution to the problem. The research done by [52] 

shows that in the high-interference situations that mainly 

characterize cognitive radio systems, an IRS helps to minimize 

interference from other users at minimal cost due to reflection 

optimization.  

 

In [53], the authors focus on improving the system’s secrecy rate 

by suppressing interference from an eavesdropper, as shown in 

Figure (5) below. In this case, semidefinite relaxation and AO 

approaches are used to lead to a suboptimal solution to the 

problem. The authors adopt joint optimization of the transmit 

beamforming vector and IRS reflection matrix by destructively 

combining signals at the eavesdropper and constructively adding 

the signal s from the direct and reflected paths. Simulation results 

reveal a high performance approaching the upper bound, and 

outperforming the heuristic approach. 

 
Figure 5: IRS application in a single eavesdropper scenario 

 

Moving from one to multiple eavesdroppers, authors in [51] 

advance the issue of secrecy addressed in [52], [53], and [54]. In 

this case, the main goal is to find the optimal BSs and IRS’s 

reflection beamformers subject to the desired QOSs of intended 

users. Utilizing Markov decision processes, a Deep 

Reinforcement Learning (DRL) approach is adopted for optimal 

joint beamforming. Further, the authors propose modified Post-

Decision State (PDS) learning and Prioritized Experience Replay 
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(PER) techniques to trace the dynamic vs. uncertainty of the 

channel and enhance the learning. The outcomes show that the 

approaches in [59] and [55] lead to 17.21% and 8.67% 

improvements in the secrecy rate, respectively.  

 

Following SINR consideration, the authors in [55] address the 

secrecy issue by using an IRS equipped with Intelligent Spectrum 

Learning (ISL) abilities to extract interfering signals from the 

incident signals. A Convolutional Neural Network (CNN) 

scheme enhances the IRS reflection optimization. In this case, the 

IRSs’ On/Off states are dynamically adjusted so that the IRS can 

decide whether or not to reflect incident signals relying on 

capabilities provided by the ISL technique. The optimization 

problem in [55] is modelled as a mixed-integer non-linear 

program (MINLP). Simulation results show that the proposed 

method has a more than 95% inference accuracy and leads to 

higher SINR than always-ON and always-OFF IRS designs. 

  

Similarly, the benefits of deep learning are applied by [56] to 

jointly optimize the BS beamforming and IRS passive 

beamforming. In this case, the authors rely on a system objective 

to which they parameterize the mapping from the received pilots. 

A permutation invariant/equivariant Graph Neural Network 

(GNN) architecture captures the interactions arising from the 

different cellular network users. This work shows that by 

considering user interactions, the proposed GNN-based structure 

leads to more generalizable and scalable solutions to the 

minimum-rate and sum-rate maximization problems.  

 

While still utilizing deep neural networks, authors in [57] adopt 

an unsupervised learning method to achieve real-time prediction 

for passive beamforming in a 3-node system. The neural network 

is labeled “RISBFNN,” comprising five fully connected (FC) 

layers. Using an Adam optimizer set to an initial learning rate of 

0.001, the authors show that this scheme leads to a near-optimal 

solution compared to SNR optimization, whose result is 

suboptimal.  

Hybrid Methods 

Iterative optimization is similarly adopted in [58], where the 

authors seek to establish the fundamental capacity limit by 

optimizing the transmit covariance and IRS phase shift matrices. 

An iterative algorithm is used for the narrowband transmission 

scenario to derive a locally optimal solution for a flat-fading 

system. Further, frequency-selective channels are considered 

where convex relaxation is applied alternately for a suboptimal 

solution to the capacity maximization problem under OFDM 

transmission. Simulation results show that condition number, 

channel power, and rank can be adjusted for improved capacity.  

 

Alternative optimization is applied in [59] to optimally solve the 

non-convex problem formulated for an IRS-assisted UAV 

system. In this case, the optimization variables are the UAV 

hovering location, the active and passive beamforming variables, 

and the computation task scheduling. The AO algorithm is 

accompanied by a genetic algorithm that helps decouple the 

problem’s various elements for alternate optimization until 

convergence is attained. In every iteration, a feasible solution is 

found at an acceptable cost regarding time and space. Following 

this investigation, computation task delay can be effectively 

minimized, improving the UE performance.  

Focusing on a MISO system, authors in [60] develop two 

algorithms to optimize the AP beamformer and the IRS phase 

shifts. The main goal in [60] is to maximize the system’s spectral 

efficiency, subject to the phase shifts and constrained by the 

transmit power. The problem, in this case, is modelled as a non-

convex optimization problem, which is solved by fixed-point 

iteration and manifold optimization. Results indicate optimal 

local solutions by effectively tracking the unit modulus 

constraints. 

 

For the UAV condition investigated in [59], the authors in [61] 

delve into the possibility of jointly optimizing the IRS reflections, 

BS selection, and BS beamformers in a multi-BS communication 

system with an aerial IRS. With the IRS mounted on the UAV, 

the authors seek to maximize energy efficiency based on IRS 

coefficients, power, QoS, and capacity constraints. A Branch-

Reduce-and-Bound (BRnB) algorithm applying SDR and 

monotonic optimization is used to show how the multi-BS joint 

beamforming increases energy efficiency by at least 50%.  

 

While [52] and [53] work under the assumption that the 

eavesdropper’s CSI is known, [54] looks into the converse 

scenario where transmit power is optimized alongside a jamming 

technique for the more practical scenario lacking the 

eavesdropper’s CSI. In [54], the authors seek to minimize the 

power required for optimum QoS at the intended user while 

allocating the residual power to artificial noise to jam the 

eavesdropper’s signal. The non-convex optimization problem, in 

this case, is solved using oblique manifold and minimization-

maximization algorithms whose performances are compared. It is 

shown that secrecy is significantly improved by optimizing the 

transmit power and number of IRS elements. 

 

Considering a single AP with several antennas and multiple users 

with one antenna each, authors in [62] propose a joint active and 

beamforming optimization scheme. Two methods are presented: 

Semidefinite Relaxation (SDR) and an AO scheme that was 

solved iteratively. Results show a significant reduction in 

transmit power and an increase in achievable rate with the number 

of IRS elements in single-user and multiuser cases.  

Other Optimization Approaches 

The impact of phase shift optimization on the system’s ergodic 

capacity is given priority in [63]. In this case, the ergodic 

capacity’s upper bound is solved by considering a Rician fading 

system. The authors in [63] show that in extreme Rician fading, 

the phase shifts should be optimally designed. Considering 

statistical CSI and hardware impairments, the ergodic capacity 

approximation technique shows that the ergodic capacity 

increases with the number of reflecting elements and is 

significantly enhanced in 2-bit quantization approaches.  

 

While focusing on the achievable rate, authors in [24] concentrate 

on the upper bound of the achievable rate and propose an effective 

method founded on the channel impulse response (CIR). They 

develop a strongest-CIR maximization (SCM) method that seeks 

to utilize the time domain of the signals to provide a sub-optimal 

solution that is less complex than the SDR approach. In [24], the 

phase shifts are aligned to the strongest CIR. 
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While most of the researchers cited above majored in IRS 

reflection optimization based on the phase shift only, the authors 

in [64] assessed the impact of amplitude control in a joint BS 

beamforming and IRS reflection optimization scheme. The 

problem, in this case, is constructed as a MINLP problem, for 

which a penalized Dinkelbach-BSUM algorithm maximizes the 

achievable rate. Simulation outcomes reveal that additional 

benefits regarding the achievable rate are obtained when the 

amplitude is optimized alongside the phase shift compared to 

phase shift control only. Amplitude control increases 

performance gains in cases with serious CSI errors compared to 

the SDR approach.  

 

Table 2: IRS optimization techniques 

Category 
Referenc

es 

Optimization 

technique 

Achievemen

ts 

Iterative 

methods 

[47] 

Iterative initial 

points search 

followed by joint 

optimization 

Decrease in 

transmit 

power with 

the number 

of IRS 

elements and 

the distance 

between IRS 

the cell-edge 

users 

[48] 

Successive 

refinement for 

iterative 

optimization and 

the branch-and-

bound method 

 

Significant 

transmit 

power saving 

derived from 

using IRS 

with discrete 

phase 

shifts 

[49] 
AO using the 

GEMM algorithm 

A better 

solution to 

the power 

minimizatio

n problem 

and low 

complexity 

[50] 

Iterative 

optimization via 

fractional 

programming 

up to 200% 

increase in 

energy 

efficiency 

and at least 

400% gains 

in sum rate 

Machine 

learning 

optimizati

on 

approache

s 

[51] 

Deep 

reinforcement 

learning (DRL) 

Improvemen

ts in the 

secrecy rate 

while tracing 

the 

uncertainty 

of the 

channel 

[55] 

 

Intelligent 

Spectrum 

Learning (ISL) 

through CNN 

More than 

95% 

inference 

accuracy and 

Category 
Referenc

es 

Optimization 

technique 

Achievemen

ts 

higher SINR 

compared to 

the always-

ON IRS 

design 

 

[56] 

A permutation 

invariant/equivari

ant graph neural 

network (GNN) 

Sum-rate 

maximizatio

n with a 

minimal 

number of 

pilots 

[57] 

Unsupervised 

learning with a 

RISBFNN deep 

neural network 

The 

realization of 

a near-

optimal 

solution with 

real-time 

prediction 

Hybrid 

methods 

[59] 

AO algorithm 

combined with 

the genetic 

algorithm 

Results in 

decreased 

computation 

task delay 

and 

improved 

performance 

of UE 

[60] 

Fixed-point 

iteration and 

manifold 

optimization 

A local 

optimal 

solution is 

obtained by 

tracking the 

unit modulus 

constraints. 

[21] 
Iterative 

optimization 

Optimal IRS 

grouping 

[52] 

Successive 

convex 

approximation 

and AO 

Minimized 

interference 

[53] 
semidefinite 

relaxation and AO 

Increased 

secrecy rates 

close to the 

upper bound 

[61] 

 

monotonic 

optimization and 

SDR 

Energy 

efficiency 

increased by 

at least 50%. 

[54] 

 

Oblique manifold 

(OM) and 

minimization 

maximization 

(MM) algorithms 

Improved 

user security 

in the 

absence of 

eavesdroppe

rs’ CSIs 

[62] 
SDR and iterative 

optimization 

An increase 

in achievable 

rate with the 
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Category 
Referenc

es 

Optimization 

technique 

Achievemen

ts 

number of 

IRS elements 

[51] 

Deep 

reinforcement 

learning (DRL) 

Improvemen

ts in the 

secrecy rate 

while tracing 

the 

uncertainty 

of the 

channel 

Other 

optimizati

on 

techniques 

[24] 

A strongest-CIR 

maximization 

(SCM) method 

A 

suboptimal 

solution that 

is less 

complex 

compared to 

the SDR 

approach 

[64] 

A penalized 

Dinkelbach-

BSUM algorithm 

Higher 

achievable 

rates 

compared to 

the SDR 

approach 

[63] 

Ergodic capacity 

approximation 

technique 

Increase in 

ergodic 

capacity with 

the number 

of elements 

Industry Applications of the IRS 

Focusing on the industry, an IRS has found its application in IoT, 

where IRSs mounted on UAVs facilitate power transfer or 

information control. In [65], the authors adopt a harvest-then-

transmit approach where the IRS aids downlink power transfer 

and Energy Harvesting in the uplink. In this case, the authors 

optimize the reflection matrix and the EH schedule. A deep 

deterministic policy gradient is applied in line with the proximal 

policy optimization algorithm to solve the network throughput 

maximization problem. The research outcomes show that the 

proposed methods lead to a higher expected sum rate than UAV 

communication systems lacking an IRS.  

 

Similarly, the IRS’s role in simultaneous power and information 

transfer has been applied in [66]. The authors’ focus is IRS’s sum 

rate maximization the by jointly optimizing the transmit 

precoding and the IRS’s phase shift matrix. In this case, the BS is 

considered to have a constant power supply as it transfers 

information to a set of users. Having the non-convex unit modulus 

constraints in simultaneous wireless information and power 

transfer, the authors adopt a classic block coordinate descent 

algorithm for iteratively solving the transmit precoding matrices 

and phase shift optimization problems. Deploying an IRS is thus 

shown to significantly enhance the sum rate while increasing the 

operating range of the Energy Receivers.  

 

In cognitive radio, [67] considers the role of IRSs in energy 

detection for spectrum sensing, where the IRS-based system is 

shown to have a higher probability of detection than systems 

without the IRS. Further applications of the IRS are in smart 

manufacturing, whereby authors in [68] show that in Industry 5.0, 

ultra-reliability and low latency communications can be achieved 

by deploying IRSs to facilitate better interaction between 

machines and humans in the industrial setup, which numerous 

blockages from machines can characterize. In addition, [69] and 

[70] show that the IRS can potentially increase radar performance 

by improving target parameter estimation and target sensing. 

RESULTS AND DISCUSSION 

The IRS has shown the potential to revolutionize communication 

systems through its applications in various sectors. This section 

presents a discussion of the various subsections with 

recommendations on the best approaches as informed by the 

literature reviewed herein. 

Hardware Design and IRS Architecture 

It has been shown that IRS design is an important factor to 

consider for optimum performance. From the resources evaluated 

herein, it is evident that consideration should be given to the 

optimum number of IRS elements, appropriate deployment of the 

structure, and hardware imperfections since these aspects 

considerably affect the EE, SE, and ergodic capacity. The best 

technique entails a distributed deployment pattern with elements 

at the BS and the users [14]. 

Channel Estimation 

Channel estimation is vital for optimum performance in IRS-

aided communication systems. Several estimation methods have 

been discussed herein. The LS method has been used for channel 

estimation in various application scenarios. According to the 

results shown in each source evaluated, the LS channel estimation 

technique is mostly applicable in relatively smaller IRS elements 

to reduce the channel estimation time and complexity. However, 

since it has been shown in [19] that relying on the LS estimates 

alone requires at least 8% more IRS elements, the deep learning 

techniques presented by [27],[28], and [29] would be more 

appropriate.  

 

The On/Off method is shown to be straightforward and applicable 

for slowly varying channels [6], [19], [20], 20, and 21]. However, 

it is limited by long training times since, for an N-element IRS 

structure, the estimation phases are N+1. The DFT-based 

activation pattern proposed by [23] is the best since it results in a 

one-order less computational complexity.  

 

This problem has been solved by grouping the IRS elements to 

reduce the training overhead, as shown in references[24]-[26]. 

The grouping pattern proposed by [26] outperforms the other 

techniques due to the distributed nature shown in the 2-D lattice 

array and the additional benefits derived from sparse grouping. 

However, this method suffers from one major disadvantage: 

reduced freedom concerning IRS refection since the same 

reflection coefficient is given to every element in a particular 

group, which may not always be optimum. 

 

Machine learning approaches have reduced training time and 

provided more accurate channel estimates. As shown in [20] and 
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[27]-[34]. These approaches enable the system to learn a mapping 

between received signals and channel characteristics. However, 

they require high computational resources and are dependent on 

initial training data from other offline channel estimation 

techniques, such as LS methods, which may lead to the 

propagation of errors. The antenna selection approach used in 

[34] proves to be the best method as it significantly reduces 

training time by incorporating a few active elements while 

eliminating the need for clustering.  

 

Focusing on the mmWave channels, several approaches have 

been proposed for channel estimation as described in section v. 

above. While [35] - [39] show significant improvements in 

channel estimation accuracy, [40] - [42] reveal the importance of 

hybrid techniques that further minimize the complexity and 

improve the estimation accuracy. The method proposed by [40] 

is the best technique since it leads to the lowest NMSE compared 

to the LS, OMP, and DNN-based methods.  

 

Since the accuracy of CSI estimation remains crucial for 

performance improvement in SE and EE, authors in [43] - [46] 

present other channel estimation methods following multi-stages 

and scalability. Among the methods, the technique proposed by 

[45] shows a 10% higher spectral efficiency than LS, MMSE, and 

compressed sensing, making it among the best approaches. In 

summary, several channel estimation methods have been 

proposed, out of which super-resolution turns out to be the best 

method due to its enhanced accuracy, putting it ahead of LS, 

OMP, and DNN-based methods.  

Optimization 

The IRS’s comparable benefits lie in optimizing its phase shifts, 

offering the desired passive beamforming. In [47]- [50], iterative 

optimization schemes are presented for improved performance. 

Although they are shown to increase the EE and SE significantly, 

they are limited by time constraints, especially when many 

iterations are needed. The scheme proposed by [50] offers the best 

iterative optimization, leading to a 200% increase in energy 

efficiency and at least 400% gains in sum rate.  

 

Moving from iterative methods, authors in [58]-[62] use hybrid 

techniques that include SDR, iterative methods, and other 

numerical methods highlighted herein. As described in section 

c(ii), these hybrid methods help to solve the imitations associated 

with SDR and iterative methods. Out of the highlighted 

techniques, the scheme presented in [54] gives the most practical 

scenario where the secrecy rate is improved despite not having 

perfect CSIs of the eavesdroppers. 

Machine learning techniques have emerged as the best solutions 

to IRS beamforming optimization as they introduce flexibility 

and enable the system to adapt to changing variables. In [51]- 

[57], several machine learning approaches are discussed. Among 

these, the ISL method proposed in  [55] offers the best solution 

due to improved inference accuracy while maximizing the SINR 

without increasing the system’s complexity. This offers better 

performance than the other optimization techniques presented in 

[63] and [64], which leads to suboptimal solutions.  

Trends and Industry Applications of the IRS 

Due to the IRS’ reconfigurability and low power consumption, 

while providing full-duplex operation, it has found application in 

other key areas, including radar, IoT, smart manufacturing, and 

industry 5.0, as highlighted in [65]-[70]. The potential application 

of IRSs in cybertwin 6G vehicular networks has been investigated 

in [71] and shown to be a potential solution that can aid vehicular 

communications, particularly in high-traffic scenarios. However, 

despite these performance improvements, authors in [11] 

compare the IRS’s performance with the relay under imperfect 

hardware conditions and reveal that the IRS can never outperform 

the full-duplex relaying system in non-ideal hardware conditions 

of the transmitter. Acquiring perfect transmitter hardware 

properties is quite challenging, implying that more research needs 

to be done to optimize the passive beamforming gains of the IRS 

without sacrificing channel estimation accuracy, energy and 

spectral efficiency, and time. 

 

Another interesting industrial application that has been examined 

in literature is the use of IRS in power grids to relay wireless 

power [72]. This concept is closely related to simultaneous 

wireless and information power transfer that has been 

investigated in [66] and has been found to be vital for future 

communications by [73] and [74]. Similar concepts of wireless 

power transmission have been identified and explored by [75] and 

[76]. While current approaches necessitate accurate CSI 

estimation, analyses done by [77] and [78] show great potential 

for achieving wireless transfer in the future without the need for 

channel state information. With these potential solutions, the 

industry is moving to a place where IRSs can be effectively 

deployed on power grids to facilitate wireless power and 

information transmission.  

 

The use of IRSs in sensing and monitoring is another possible 

industrial application that is expected to transform industrial 

processes significantly. Following the research by [79] - [82], it 

is evident that IRSs can provide not only localization but also 

monitoring, making it possible to achieve machine monitoring 

and environmental monitoring effectively and at a low-cost. 

Lastly, the rise of Extended Reality (XR), described in  [83] - 

[86], is expected in future mobile communications, a trend that 

will be made possible by the deployment of IRSs, as shown in 

[87]. 

Open Issues  

While authors have widely examined how the IRS can be 

optimized and applied in various wireless communication 

settings and in industry, little has been done towards its 

commercialization. Commercializing the IRS with require 

standardization by Standard Development Organizations (SDO), 

like the IEEE and 3rd Generation Partnership Project (3GPP), as 

noted by [88] . In addition, while current research treats the IRS-

User channels as LoS, it is expected that in actual industrial 

implementations, this link will contain NLoS components dues to 

reflections, this reveals the need for more complex channel design 

and larger databases to characterize such channels [88] .  

 

Further, since the number of IRS elements needs to be 

significantly large to outperform relay technologies, it is shown 

that more efficient technologies for tunability and 
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reconfigurability are needed to balance performance, cost, and 

reliability [89] . Security and privacy concerns for UAV 

technologies have been addressed in [90]- [92] . Similarly, 

authors have derived technologies for interference mitigation in 

satellite communication [93] - [94]. However, it is noted in [95] 

that privacy challenges associated with IRS systems cannot be 

addressed by simply considering the presence of transmissions. 

This implies that for the IRS to be industrialized in the UAV and 

satellite communication systems, more research is need to 

mitigate the risks associated with privacy breach which could 

have severe consequences.  

 

As the application of IRS in future mobile communications shows 

a great promise of high efficiency and low latency, the issue of 

handover becomes critical. Although several propositions have 

been offered in [96] - [99], these are formulated under the premise 

of an available LoS. Therefore, in NLoS, effective handover 

mechanisms need to be developed as highlighted in [100]. In 

summary, challenges associated with privacy, integration with 

other communication infrastructures, standardization, and 

handover remain critical issues that will significantly determine 

the industrial application of intelligent reflecting surfaces in the 

future. 

CONCLUSIONS 

In this review paper, we have presented a comprehensive 

assessment of the IRS, its structure and hardware requirements 

and open issues, channel estimation approaches, optimization 

methods, and various key applications in the industry. We have 

categorized the channel estimation and optimization techniques 

into several sections for easy comparison. With this paper, one 

can understand the benefits and challenges that remain 

unaddressed in the context of the IRS.  

 

Accurate channel estimation is crucial for IRS performance 

optimization. Several channel estimation techniques have been 

addressed herein, having different outcomes and challenges. The 

LS method is the most commonly used in CSI acquisition, while 

several approaches such as On/Off, element-grouping, machine 

learning, and compressive channel estimation are applied. While 

the On/Off method is straightforward, it is limited by high 

overhead, making it unsuitable, especially when the IRS has 

many elements. Machine learning techniques are the most 

suitable as they provide reliability and flexibility. 

 

The main contribution of the IRS is in optimizing key parameters 

such as the achievable rate, energy efficiency, spectral efficiency, 

sum rate, and power minimization. All these parameters are 

optimized by working on the phase shifts of the IRS to ensure 

constructive or destructive passive beamforming. While the 

iterative methods are easy to implement and can significantly 

improve the system’s achievable rates, the ISL approach provides 

a better solution due to its unmatched role in maximizing the 

SINR without increasing the system’s complexity. 

 

The IRS’s reconfigurability has made it an attractive solution to 

many communication system challenges. In addition to 

improving secrecy rates, reducing transmission losses, and 

offering a higher system throughput, it has been applied in radar, 

IoT, smart manufacturing, and industry 5.0. As the IRS continues 

to gain application in these areas, it is important to consider the 

challenges highlighted herein including secrecy, handover 

mechanisms, and standardization. More research is needed on 

overcoming the challenges highlighted herein to ensure optimal 

IRS performance is achieved without sacrificing the channel 

estimation accuracy and system reliability. 

ACKNOWLEDGMENT 

The authors thank the Dedan Kimathi University of Technology 

for this research's financial and material support 

REFERENCES 

[1] A. Gashtasbi, M. M. Silva, and R. Dinis, “An Overview of 

Intelligent Reflecting Surfaces for Future Wireless 

Systems,” in 2022 13th International Symposium on 

Communication Systems, Networks, and Digital Signal 

Processing, CSNDSP 2022, Institute of Electrical and 

Electronics Engineers Inc., 2022, pp. 314–319, doi: 

10.1109/CSNDSP54353.2022.9907933. 

[2] D. Pérez-Adán, Ó. Fresnedo, J. P. Gonzalez-Coma, and L. 

Castedo, “Intelligent reflective surfaces for wireless 

networks: An overview of applications, approached issues, 

and open problems,” Electron. Switz., vol. 10, no. 19, 2021, 

doi: 10.3390/electronics10192345. 

[3] S. Hassouna et al., “A survey on reconfigurable intelligent 

surfaces: Wireless communication perspective,” IET 

Commun., vol. 17, no. 5, pp. 497–537, Mar. 2023, doi: 

10.1049/cmu2.12571. 

[4] F. C. Okogbaa et al., “Design and Application of Intelligent 

Reflecting Surface (IRS) for Beyond 5G Wireless 

Networks: A Review,” Sensors, vol. 22, no. 7, Apr. 2022, 

doi: 10.3390/s22072436. 

[5] I. Alamzadeh, G. C. Alexandropoulos, N. Shlezinger, and 

M. F. Imani, “A reconfigurable intelligent surface with 

integrated sensing capability,” Sci. Rep., vol. 11, no. 1, Dec. 

2021, doi: 10.1038/s41598-021-99722-x. 

[6] Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng, and 

H. Guo, “Large intelligent surface/antennas (LISA): 

Making reflective radios smart,” J. Commun. Inf. Netw., vol. 

4, no. 2, pp. 40–50, 2019. 

[7] Z.-Q. He and X. Yuan, “Cascaded channel estimation for 

large intelligent metasurface assisted massive MIMO,” 

IEEE Wirel. Commun. Lett., vol. 9, no. 2, pp. 210–214, 

2019. 

[8] S. Gong et al., “Toward Smart Wireless Communications 

via Intelligent Reflecting Surfaces: A Contemporary 

Survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 4, 2020, 

doi: 10.1109/COMST.2020.3004197. 

[9] J. Wu and B. Shim, “Power minimization of intelligent 

reflecting surface-aided uplink IoT networks,” in IEEE 

Wireless Communications and Networking Conference, 

WCNC, Institute of Electrical and Electronics Engineers 

Inc., 2021, doi: 10.1109/WCNC49053.2021.9417397. 

[10] X. Peng, X. Hu, and C. Zhong, “Distributed Intelligent 

Reflecting Surfaces-Aided Communication System: 

Analysis and Design,” IEEE Trans. Green Commun. Netw., 

vol. 6, no. 4, pp. 1932–1944, Dec. 2022, doi: 

10.1109/TGCN.2022.3186543. 

[11] M. H. N. Shaikh, V. A. Bohara, A. Srivastava, and G. 

Ghatak, “Intelligent Reflecting Surfaces Versus Full-

Duplex Relaying: Performance Comparison for Non-Ideal 

Transmitter Case,” in IEEE International Symposium on 

Personal, Indoor, and Mobile Radio Communications, 

PIMRC, Institute of Electrical and Electronics Engineers 



ANNE N. MUNIRA / ANDALAS JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY  - VOL. 4  NO. 1 (2024) MAY-2024 

https://doi.org/10.25077/ajeeet.v4i1.100   28 

Inc., Sep. 2021, pp. 513–518. doi: 

10.1109/PIMRC50174.2021.9569598. 

[12] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, 

“Intelligent Reflecting Surface Aided Wireless 

Communications: A Tutorial.” arXiv, Jul. 06, 2020. 

Accessed: Jun. 11, 2023. [Online]. Available: 

http://arxiv.org/abs/2007.02759 

[13] X. Ma, Z. Chen, L. Yan, C. Han, and Q. Wen, “Joint 

hardware design and capacity analysis for intelligent 

reflecting surface enabled terahertz MIMO 

communications,” ArXiv Prepr. ArXiv201206993, 2020. 

[14] C. You, B. Zheng, W. Mei, and R. Zhang, “How to Deploy 

Intelligent Reflecting Surfaces in Wireless Network: BS-

side, User-side, or Both Sides?,” Dec. 2020, [Online]. 

Available: http://arxiv.org/abs/2012.03403 

[15] A. A. Boulogeorgos and A. Alexiou, “How much do 

hardware imperfections affect the performance of 

reconfigurable intelligent surface-assisted systems?,” IEEE 

Open J. Commun. Soc., vol. 1, pp. 1185–1195, 2020. 

[16] A. M. Tota Khel and K. A. Hamdi, “Effects of Hardware 

Impairments on IRS-Enabled MISO Wireless 

Communication Systems,” IEEE Commun. Lett., vol. 26, 

no. 2, 2022, doi: 10.1109/LCOMM.2021.3134815. 

[17] M. H. N. Shaikh, V. A. Bohara, A. Srivastava, and G. 

Ghatak, “Performance Analysis of Intelligent Reflecting 

Surface-Assisted Wireless System with Non-Ideal 

Transceiver,” IEEE Open J. Commun. Soc., vol. 2, pp. 671–

686, 2021, doi: 10.1109/OJCOMS.2021.3068866. 

[18] M. H. N. Shaikh, V. A. Bohara, A. Srivastava, and G. 

Ghatak, “A Downlink RIS-Aided NOMA System With 

Hardware Impairments: Performance Characterization and 

Analysis,” IEEE Open J. Signal Process., vol. 3, pp. 288–

305, 2022, doi: 10.1109/OJSP.2022.3194416. 

[19] D. Mishra and H. Johansson, “Channel estimation and low-

complexity beamforming design for passive intelligent 

surface assisted MISO wireless energy transfer,” presented 

at the ICASSP 2019-2019 IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), 

IEEE, 2019, pp. 4659–4663. 

[20] A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. 

Chatzinotas, “Deep channel learning for large intelligent 

surfaces aided mm-wave massive MIMO systems,” IEEE 

Wirel. Commun. Lett., vol. 9, no. 9, pp. 1447–1451, 2020. 

[21] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent 

reflecting surface meets OFDM: Protocol design and rate 

maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 

4522–4535, 2020. 

[22] H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and 

M.-S. Alouini, “Intelligent reflecting surface-assisted 

multiuser MISO communication: Channel estimation and 

beamforming design,” IEEE Open J. Commun. Soc., vol. 1, 

pp. 661–680, 2020. 

[23] T. L. Jensen and E. De Carvalho, “An optimal channel 

estimation scheme for intelligent reflecting surfaces based 

on a minimum variance unbiased estimator,” presented at 

the ICASSP 2020-2020 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 

2020, pp. 5000–5004. 

[24] B. Zheng and R. Zhang, “Intelligent Reflecting Surface-

Enhanced OFDM: Channel Estimation and Reflection 

Optimization,” Sep. 2019, doi: 

10.1109/LWC.2019.2961357. 

[25] C. You, B. Zheng, and R. Zhang, “Channel Estimation and 

Passive Beamforming for Intelligent Reflecting Surface: 

Discrete Phase Shift and Progressive Refinement,” IEEE J. 

Sel. Areas Commun., vol. 38, no. 11, pp. 2604–2620, Nov. 

2020, doi: 10.1109/JSAC.2020.3007056. 

[26] Y. Lin, S. Jin, M. Matthaiou, and X. You, “Channel 

Estimation and User Localization for IRS-Assisted MIMO-

OFDM Systems,” IEEE Trans. Wirel. Commun., vol. 21, no. 

4, pp. 2320–2335, Apr. 2022, doi: 

10.1109/TWC.2021.3111176. 

[27] W. Chen, Z. Chen, and X. Ma, “Channel estimation for 

intelligent reflecting surface aided multiuser MISO 

terahertz system,” Terahertz Sci. Technol., vol. 13, no. 2, pp. 

51–60, 2020. 

[28] C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual 

network empowered channel estimation for IRS-assisted 

multiuser communication systems,” presented at the ICC 

2021-IEEE International Conference on Communications, 

IEEE, 2021, pp. 1–7. 

[29] Z. Zhang, T. Ji, H. Shi, C. Li, Y. Huang, and L. Yang, “A 

Self-Supervised Learning-Based Channel Estimation for 

IRS-Aided Communication Without Ground Truth,” IEEE 

Trans. Wirel. Commun., 2023. 

[30] Z. Li, Z. Chen, X. Ma, and W. Chen, “Channel Estimation 

for Intelligent Reflecting Surface Enabled Terahertz MIMO 

Systems: A Deep Learning Perspective.” 

[31] Y. Liu, I. Al-Nahhal, O. A. Dobre, and F. Wang, “Deep-

Learning Channel Estimation for IRS-Assisted Integrated 

Sensing and Communication System,” IEEE Trans. Veh. 

Technol., May 2022, doi: 10.1109/TVT.2022.3231727. 

[32] S. Liu, M. Lei, and M. J. Zhao, “Deep Learning Based 

Channel Estimation for Intelligent Reflecting Surface Aided 

MISO-OFDM Systems,” in IEEE Vehicular Technology 

Conference, Institute of Electrical and Electronics 

Engineers Inc., Nov. 2020. doi: 10.1109/VTC2020-

Fall49728.2020.9348697. 

[33] G. López-Lanuza, K. Chen-Hu, and A. G. Armada, “Deep 

Learning-Based Optimization for Reconfigurable 

Intelligent Surface-Assisted Communications,” in 2022 

IEEE Wireless Communications and Networking 

Conference (WCNC), Apr. 2022, pp. 764–769. doi: 

10.1109/WCNC51071.2022.9771876. 

[34] S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, “Deep 

Learning Optimized Sparse Antenna Activation for 

Reconfigurable Intelligent Surface Assisted 

Communication,” IEEE Trans. Commun., vol. 69, no. 10, 

pp. 6691–6705, Oct. 2021, doi: 

10.1109/TCOMM.2021.3097726. 

[35] P. Wang, J. Fang, H. Duan, and H. Li, “Compressed Channel 

Estimation and Joint Beamforming for Intelligent 

Reflecting Surface-Assisted Millimeter Wave Systems,” 

Nov. 2019, doi: 10.1109/LSP.2020.2998357. 

[36] Z. Wan, Z. Gao, and M.-S. Alouini, “Broadband channel 

estimation for intelligent reflecting surface aided mmWave 

massive MIMO systems,” presented at the ICC 2020-2020 

IEEE International Conference on Communications (ICC), 

IEEE, 2020, pp. 1–6. 

[37] V. K. Gorty and A. Chattopadhyay, “Channel estimation for 

double IRS assisted communication for a mobile user,” 

2023. 

[38] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling Large 

Intelligent Surfaces with Compressive Sensing and Deep 

Learning,” Apr. 2019, [Online]. Available: 

http://arxiv.org/abs/1904.10136 

[39] X. Ma et al., “Joint Channel Estimation and Data Rate 

Maximization for Intelligent Reflecting Surface Assisted 

Terahertz MIMO Communication Systems,” IEEE Access, 

vol. 8, pp. 99565–99581, 2020, doi: 

10.1109/ACCESS.2020.2994100. 

[40] Y. Wang, H. Lu, and H. Sun, “Channel Estimation in IRS-

Enhanced mmWave System with Super-Resolution 

Network,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2599–

2603, Aug. 2021, doi: 10.1109/LCOMM.2021.3079322. 

[41] Z. Chen, J. Tang, X. Y. Zhang, D. K. C. So, S. Jin, and K. K. 

Wong, “Hybrid Evolutionary-Based Sparse Channel 

Estimation for IRS-Assisted mmWave MIMO Systems,” 

IEEE Trans. Wirel. Commun., vol. 21, no. 3, pp. 1586–1601, 

Mar. 2022, doi: 10.1109/TWC.2021.3105405. 



ANNE N. MUNIRA / ANDALAS JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY  - VOL. 4  NO. 1 (2024) MAY-2024 

https://doi.org/10.25077/ajeeet.v4i1.100   29 

[42] S. Ma, W. Shen, J. An, and L. Hanzo, “Wideband Channel 

Estimation for IRS-Aided Systems in the Face of Beam 

Squint,” IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 

6240–6253, Oct. 2021, doi: 10.1109/TWC.2021.3072694. 

[43] Z. Wang, L. Liu, and S. Cui, “Channel Estimation for 

Intelligent Reflecting Surface Assisted Multiuser 

Communications: Framework, Algorithms, and Analysis,” 

IEEE Trans. Wirel. Commun., vol. 19, no. 10, pp. 6607–

6620, Oct. 2020, doi: 10.1109/TWC.2020.3004330. 

[44] Y. Wei, M. M. Zhao, M. J. Zhao, and Y. Cai, “Channel 

Estimation for IRS-Aided Multiuser Communications With 

Reduced Error Propagation,” IEEE Trans. Wirel. Commun., 

vol. 21, no. 4, pp. 2725–2741, Apr. 2022, doi: 

10.1109/TWC.2021.3115161. 

[45] C. Peng, H. Deng, H. Xiao, Y. Qian, W. Zhang, and Y. 

Zhang, “Two-Stage Channel Estimation for Semi-Passive 

RIS-Assisted Millimeter Wave Systems,” Sensors, vol. 22, 

no. 15, 2022, doi: 10.3390/s22155908. 

[46] J. An, Q. Wu, and C. Yuen, “Scalable Channel Estimation 

and Reflection Optimization for Reconfigurable Intelligent 

Surface-Enhanced OFDM Systems,” IEEE Wirel. Commun. 

Lett., vol. 11, no. 4, pp. 796–800, Apr. 2022, doi: 

10.1109/LWC.2022.3145885. 

[47] X. Xie, F. Fang, and Z. Ding, “Joint Optimization of 

Beamforming, Phase-Shifting and Power Allocation in a 

Multi-Cluster IRS-NOMA Network,” IEEE Trans. Veh. 

Technol., vol. 70, no. 8, pp. 7705–7717, Aug. 2021, doi: 

10.1109/TVT.2021.3090255. 

[48] Q. Wu and R. Zhang, “Beamforming Optimization for 

Wireless Network Aided by Intelligent Reflecting Surface 

With Discrete Phase Shifts,” IEEE Trans. Commun., vol. 68, 

no. 3, pp. 1838–1851, Mar. 2020, doi: 

10.1109/TCOMM.2019.2958916. 

[49] M. Shi, X. Li, T. Fan, J. Liu, and S. Lv, “Multiuser 

beamforming optimization for IRS‐aided systems with 

discrete phase shifts,” IET Commun., vol. 16, no. 13, pp. 

1523–1530, 2022. 

[50] D. Zhao, H. Lu, Y. Wang, and H. Sun, “Joint passive 

beamforming and user association optimization for IRS-

assisted mmWave systems,” presented at the GLOBECOM 

2020-2020 IEEE Global Communications Conference, 

IEEE, 2020, pp. 1–6. 

[51] H. Yang et al., “Deep Reinforcement Learning Based 

Intelligent Reflecting Surface for Secure Wireless 

Communications,” in 2020 IEEE Global Communications 

Conference, GLOBECOM 2020 - Proceedings, Institute of 

Electrical and Electronics Engineers Inc., Dec. 2020. doi: 

10.1109/GLOBECOM42002.2020.9322615. 

[52] X. Guan, Q. Wu, and R. Zhang, “Joint Power Control and 

Passive Beamforming in IRS-Assisted Spectrum Sharing,” 

IEEE Commun. Lett., vol. 24, no. 7, pp. 1553–1557, Jul. 

2020, doi: 10.1109/LCOMM.2020.2979709. 

[53] M. Cui, G. Zhang, and R. Zhang, “Secure wireless 

communication via intelligent reflecting surface,” IEEE 

Wirel. Commun. Lett., vol. 8, no. 5, pp. 1410–1414, Oct. 

2019, doi: 10.1109/LWC.2019.2919685. 

[54] H.-M. Wang, J. Bai, and L. Dong, “Intelligent reflecting 

surfaces assisted secure transmission without 

eavesdropper’s CSI,” IEEE Signal Process. Lett., vol. 27, 

pp. 1300–1304, 2020. 

[55] B. Yang, X. Cao, C. Huang, C. Yuen, L. Qian, and M. Di 

Renzo, “Intelligent spectrum learning for wireless networks 

with reconfigurable intelligent surfaces,” IEEE Trans. Veh. 

Technol., vol. 70, no. 4, pp. 3920–3925, 2021. 

[56] T. Jiang, H. V. Cheng, and W. Yu, “Learning to Reflect and 

to Beamform for Intelligent Reflecting Surface with Implicit 

Channel Estimation,” Sep. 2020, [Online]. Available: 

http://arxiv.org/abs/2009.14404 

[57] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, 

“Unsupervised learning for passive beamforming,” Ieee 

Commun. Lett., vol. 24, no. 5, pp. 1052–1056, 2020. 

[58] S. Zhang and R. Zhang, “On the Capacity of Intelligent 

Reflecting Surface Aided MIMO Communication,” in 2020 

IEEE International Symposium on Information Theory 

(ISIT), Jun. 2020, pp. 2977–2982. doi: 

10.1109/ISIT44484.2020.9174375. 

[59] C. He and J. Xiao, “Joint Optimization in Intelligent 

Reflecting Surface-Aided UAV Communication for 

Multiaccess Edge Computing,” Wirel. Commun. Mob. 

Comput., vol. 2022, p. 5415562, Mar. 2022, doi: 

10.1155/2022/5415562. 

[60] X. Yu, D. Xu, and R. Schober, “MISO wireless 

communication systems via intelligent reflecting surfaces,” 

presented at the 2019 IEEE/CIC International Conference 

on Communications in China (ICCC), IEEE, 2019, pp. 735–

740. 

[61] J. J. L. Quispe, T. F. Maciel, Y. C. B. Silva, A. Klein, and J. 

Beamforming, “Selection for Energy-Efficient 

Communications via Aerial-RIS,” 2021. 

[62] Q. Wu and R. Zhang, “Intelligent reflecting surface 

enhanced wireless network via joint active and passive 

beamforming,” IEEE Trans. Wirel. Commun., vol. 18, no. 

11, pp. 5394–5409, 2019. 

[63] Y. Han, W. Tang, S. Jin, C. -K. Wen, and X. Ma, “Large 

Intelligent Surface-Assisted Wireless Communication 

Exploiting Statistical CSI,” IEEE Trans. Veh. Technol., vol. 

68, no. 8, pp. 8238–8242, Aug. 2019, doi: 

10.1109/TVT.2019.2923997. 

[64] M. M. Zhao, Q. Wu, M. J. Zhao, and R. Zhang, “IRS-Aided 

Wireless Communication with Imperfect CSI: Is Amplitude 

Control Helpful or Not?,” in 2020 IEEE Global 

Communications Conference, GLOBECOM 2020 - 

Proceedings, Institute of Electrical and Electronics 

Engineers Inc., Dec. 2020. doi: 

10.1109/GLOBECOM42002.2020.9348255. 

[65] K. K. Nguyen, A. Masaracchia, V. Sharma, H. V. Poor, and 

T. Q. Duong, “RIS-assisted UAV communications for IoT 

with wireless power transfer using deep reinforcement 

learning,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 5, 

pp. 1086–1096, 2022. 

[66] C. Pan et al., “Intelligent reflecting surface aided MIMO 

broadcasting for simultaneous wireless information and 

power transfer,” IEEE J. Sel. Areas Commun., vol. 38, no. 

8, pp. 1719–1734, 2020. 

[67] W. Wu et al., “IRS-Enhanced Energy Detection for 

Spectrum Sensing in Cognitive Radio Networks,” IEEE 

Wirel. Commun. Lett., vol. 10, no. 10, pp. 2254–2258, Oct. 

2021, doi: 10.1109/LWC.2021.3099121. 

[68] Md. Noor-A-Rahim et al., “Towards Industry 5.0: Intelligent 

Reflecting Surface (IRS) in Smart Manufacturing,” Jan. 

2022, [Online]. Available: http://arxiv.org/abs/2201.02214 

[69] Z. Esmaeilbeig, K. V. Mishra, and M. Soltanalian, “IRS-

aided radar: Enhanced target parameter estimation via 

intelligent reflecting surfaces,” presented at the 2022 IEEE 

12th Sensor Array and Multichannel Signal Processing 

Workshop (SAM), IEEE, 2022, pp. 286–290. 

[70] X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target 

Sensing with Intelligent Reflecting Surface: Architecture 

and Performance,” Jan. 2022, [Online]. Available: 

http://arxiv.org/abs/2201.09091 

 

[71] M. A. Javed, T. N. Nguyen, J. Mirza, J. Ahmed, and B. Ali, 

“Reliable Communications for Cybertwin-Driven 6G 

IoVs Using Intelligent Reflecting Surfaces,” IEEE Trans 

Industr Inform, vol. 18, no. 11, pp. 7454–7462, 2022, 

doi: 10.1109/TII.2022.3151773. 



ANNE N. MUNIRA / ANDALAS JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY  - VOL. 4  NO. 1 (2024) MAY-2024 

https://doi.org/10.25077/ajeeet.v4i1.100   30 

[72] H. Li, S. Shen, M. Nerini, and B. Clerckx, 

“Reconfigurable Intelligent Surfaces 2.0: Beyond 

Diagonal Phase Shift Matrices,” IEEE Communications 

Magazine, vol. 62, no. 3, pp. 102–108, 2024, doi: 

10.1109/MCOM.001.2300019. 

[73] H. Ren, Z. Chen, G. Hu, Z. Peng, C. Pan, and J. Wang, 

“Transmission design for active RIS-aided simultaneous 

wireless information and power transfer,” IEEE 

Wireless Communications Letters, vol. 12, no. 4, pp. 

600–604, 2023. 

[74] F.-B. Ueng, H.-F. Wang, and H.-W. Shen, “Re-

configurable Intelligent Surfaces Assisted Simultaneous 

Wireless Information and Power Transfer,” Wirel Pers 

Commun, vol. 133, no. 3, pp. 1963–1985, 2023. 

[75] C. Kumar and S. Kashyap, “On the power transfer 

efficiency and feasibility of wireless energy transfer 

using double IRS,” IEEE Trans Veh Technol, 2023. 

[76] Q. Yue, J. Hu, K. Yang, and Q. Yu, “Joint transceiving 

and reflecting design for intelligent reflecting surface 

aided wireless power transfer,” IEEE Trans Wirel 

Commun, 2023. 

[77] M. Fu, W. Mei, and R. Zhang, “Multi-active/passive-

IRS enabled wireless information and power transfer: 

Active IRS deployment and performance analysis,” 

IEEE Communications Letters, 2023. 

[78] C. Luo, J. Hu, L. Xiang, K. Yang, and K.-K. Wong, 

“Massive Wireless Energy Transfer without Channel 

State Information via Imperfect Intelligent Reflecting 

Surfaces,” IEEE Trans Veh Technol, 2024. 

[79] M. Hwang et al., “Environment-Adaptive 

Reconfigurable Intelligent Surface for Dynamic 

Channel Conditions,” IEEE Communications Magazine, 

vol. 61, no. 11, pp. 152–158, 2023, doi: 

10.1109/MCOM.001.2300314. 

[80] S. P. Chepuri, N. Shlezinger, F. Liu, G. C. 

Alexandropoulos, S. Buzzi, and Y. C. Eldar, “Integrated 

sensing and communications with reconfigurable 

intelligent surfaces: From signal modeling to 

processing,” IEEE Signal Process Mag, vol. 40, no. 6, 

pp. 41–62, 2023. 

[81] R. Liu, M. Li, H. Luo, Q. Liu, and A. L. Swindlehurst, 

“Integrated sensing and communication with 

reconfigurable intelligent surfaces: Opportunities, 

applications, and future directions,” IEEE Wirel 

Commun, vol. 30, no. 1, pp. 50–57, 2023. 

[82] Z. Zhang, T. Jiang, and W. Yu, “Localization with 

Reconfigurable Intelligent Surface: An Active Sensing 

Approach,” IEEE Trans Wirel Commun, 2023. 

[83] A. Alhakamy, “Extended Reality (XR) Toward Building 

Immersive Solutions: The Key to Unlocking Industry 

4.0,” ACM Comput Surv. 

[84] B. K. Burian et al., “Using extended reality (XR) for 

medical training and real-time clinical support during 

deep space missions,” Appl Ergon, vol. 106, p. 103902, 

2023. 

[85] J. Ratcliffe, F. Soave, N. Bryan-Kinns, L. Tokarchuk, 

and I. Farkhatdinov, “Extended reality (XR) remote 

research: A survey of drawbacks and 

opportunities.” Proceedings of the 2021 CHI conference 

on human factors in computing systems. 2021. 

[86] E. Anastasiou, A. T. Balafoutis, and S. Fountas, 

“Applications of extended reality (XR) in agriculture, 

livestock farming, and aquaculture: A review,” Smart 

Agricultural Technology, vol. 3, p. 100105, 2023. 

[87] T. Ma, Y. Xiao, X. Lei, and M. Xiao, “Integrated 

Sensing and Communication for Wireless Extended 

Reality (XR) With Reconfigurable Intelligent Surface,” 

IEEE J Sel Top Signal Process, vol. 17, no. 5, pp. 980–

994, 2023, doi: 10.1109/JSTSP.2023.3304846. 

[88] R. Liu, Q. Wu, M. Di Renzo, and Y. Yuan, “A Path to 

Smart Radio Environments: An Industrial Viewpoint on 

Reconfigurable Intelligent Surfaces,” IEEE Wirel 

Commun, vol. 29, no. 1, pp. 202–208, 2022, doi: 

10.1109/MWC.111.2100258. 

[89] R. Flamini et al., “Toward a Heterogeneous Smart 

Electromagnetic Environment for Millimeter-Wave 

Communications: An Industrial Viewpoint,” IEEE 

Trans Antennas Propag, vol. 70, no. 10, pp. 8898–8910, 

2022, doi: 10.1109/TAP.2022.3151978. 

[90] S. Li, B. Duo, M. D. Renzo, M. Tao, and X. Yuan, 

“Robust Secure UAV Communications With the Aid of 

Reconfigurable Intelligent Surfaces,” IEEE Trans Wirel 

Commun, vol. 20, no. 10, pp. 6402–6417, 2021, doi: 

10.1109/TWC.2021.3073746. 

[91] S. Fang, G. Chen, and Y. Li, “Joint Optimization for 

Secure Intelligent Reflecting Surface Assisted UAV 

Networks,” IEEE Wireless Communications Letters, 

vol. 10, no. 2, pp. 276–280, 2021, doi: 

10.1109/LWC.2020.3027969. 

[92] W. Wang, H. Tian, W. Ni, and M. Hua, “Intelligent 

Reflecting Surface Aided Secure UAV 

Communications,” ArXiv, vol. abs/2011.04339, 2020, 

[Online]. Available: 

https://api.semanticscholar.org/CorpusID:226282490 

[93] S. Xu, J. Liu, T. K. Rodrigues, and N. Kato, 

“Envisioning Intelligent Reflecting Surface Empowered 

Space-Air-Ground Integrated Network,” IEEE Netw, 

vol. 35, no. 6, pp. 225–232, 2021, doi: 

10.1109/MNET.011.2100007. 

[94] Q. Ngo, T. Khoa, A. Mahmood, and W. Xiang, Physical 

Layer Security in IRS-Assisted Cache-Enabled Hybrid 

Satellite-Terrestrial Networks. 2022. doi: 

10.36227/techrxiv.20224296. 

[95] F. Naeem, M. Ali, G. Kaddoum, C. Huang, and C. Yuen, 

“Security and Privacy for Reconfigurable Intelligent 

Surface in 6G: A Review of Prospective Applications 

and Challenges,” IEEE Open Journal of the 

Communications Society, vol. 4, pp. 1196–1217, 2023, 

doi: 10.1109/OJCOMS.2023.3273507. 

[96] H. Zhang and H. Wei, “Discrete-Time Modeling and 

Handover Analysis of Intelligent Reflecting Surface-

Assisted Networks,” arXiv preprint arXiv:2403.07323, 

2024. 

[97] H. Zhang and H. Wei, “Analysis of Intelligent Reflecting 

Surface-Enhanced Mobility Through a Line-of-Sight 

State Transition Model,” arXiv preprint 

arXiv:2403.07337, 2024. 

[98] K. W. S. Palitharathna, A. M. Vegni, P. D. 

Diamantoulakis, H. A. Suraweera, and I. Krikidis, 

“Handover Management through Reconfigurable 

https://api.semanticscholar.org/CorpusID:226282490


ANNE N. MUNIRA / ANDALAS JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY  - VOL. 4  NO. 1 (2024) MAY-2024 

https://doi.org/10.25077/ajeeet.v4i1.100   31 

Intelligent Surfaces for VLC under Blockage 

Conditions,” arXiv preprint arXiv:2402.16873, 2024. 

[99] O. S. Faragallah, H. S. El‐Sayed, and M. G. El‐Mashed, 

“High mobility transmission system under intelligent 

reflecting surface,” Transactions on Emerging 

Telecommunications Technologies, vol. 33, no. 7, p. 

e4495, 2022. 

[100] S. Basharat, M. Khan, M. Iqbal, U. S. Hashmi, S. A. R. 

Zaidi, and I. Robertson, “Exploring reconfigurable 

intelligent surfaces for 6G: State‐of‐the‐art and the road 

ahead,” IET Communications, vol. 16, no. 13, pp. 1458–

1474, 2022.  

 

  


